Analysis of gases, nutrients, metabolic products and organic compounds in environmental samples, porewaters, or cultures is performed using different photometric, gas and liquid chromatographic, mass spectrometric, or microsensor, techniques.
Ratios of dissolved gases (N2/Ar/O2) are measured directly in water samples using a membrane-inlet mass spectrometer (MIMS) (Bay Instruments, Easton, Maryland, USA).
Methane and nitrous oxide concentrations in water samples are measured by headspace analysis using a gas chromatograph with flame ionization (GC-FID for CH4) or electron capture detector (GC-ECD for N2O).
For the concentration measurement of nutrients and major ions we use standard ion chromatographic and colorimetric methods. A multi-detector gradient HPLC system is used for the analysis of sugars, organic acids or intermediate oxidized sulfur species. For high-resolution solute profiling (e.g.,O2, H2S, pH) in sediment porewaters and microbial mats we use computer-motorized amperometric and potentiometric microsensors.
We have dedicated workspace for the extraction, separation and derivatization of organic compounds. For quantification and identification of individual (lipid) compounds is performed we use a gas chromatograph equipped with a split/splitless injector, a FID, and a quadrupole MS detector.
As a copartner, we also have access to a XRF core scanner (ITRAX) installed at the University of Bern (Prof. Dr. F. Anselmetti). Scanning XRF analysis is a non-destructive analytical method in limnogeological studies that allows the assessment of the chemical composition of sediments at very high spatial, and thus temporal, resolution.
Quick Links
Social Media